
Reasoning about Comprehensions with
First-Order SMT Solvers

K. Rustan M. Leino
Microsoft Research
Redmond, WA, USA

leino@microsoft.com

Rosemary Monahan
National University of Ireland

Maynooth, Co. Kildare, Ireland

rosemary.monahan@nuim.ie

ABSTRACT
This paper presents a technique for translating common
comprehension expressions (sum , count , product , min ,
and max) into verification conditions that can be tackled
by two off-the-shelf first-order SMT solvers. Since a first-
order SMT solver does not directly support the bound vari-
ables that occur in comprehension expressions, the challenge
is to provide a sound axiomatisation that is strong enough
to prove interesting programs and, furthermore, that can
be used automatically by the SMT solver. The technique
has been implemented in the Spec# program verifier. The
paper also reports on the experience of using Spec# to ver-
ify several challenging programming examples drawn from a
textbook by Dijkstra and Feijen.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Assertion checkers, Class invariants, Correctness
proofs, Formal methods, Programming by contract ; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Assertions, In-
variants, Logics of programs, Mechanical verification, Pre-
and post-conditions, Specification techniques

General Terms
Verification, Languages

Keywords
SMT Solvers, Matching Triggers, Quantifiers, Spec#

1. INTRODUCTION
We consider the automatic verification of programs that

use comprehension expressions. A comprehension expres-
sion, sometimes called a generalised quantifier or an aggre-
gate expression, prescribes a family of expressions that are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

public static int SegSum(int[] a, int i , int j)
requires 0 6 i && i 6 j && j 6 a.Length;
ensures result == sum{int k in (i : j); a[k]};
{

int s = 0;
for (int n = i ; n < j ; n++)

invariant i 6 n && n 6 j ;
invariant s == sum{int k in (i : n); a[k]};
{

s += a[n];
}
return s;
}

Figure 1: Spec# method to sum the elements
a[i], a[i + 1], . . . , a[j − 1] . Here and throughout, our
examples assume use of the Spec# compiler’s /nn

switch, which treats reference types as non-null ref-
erence types by default.

to be combined using some operator. For example, each of
the two sum comprehensions in Fig. 1 prescribes a family
of array elements that are combined using addition, thus
summing various elements of array a . Other familiar com-
prehensions include product , min , and max , which apply
the operator of the same name to elements of the family, and
count , which adds 1 for every element that is in the family.

We present a technique for translating common compre-
hension expressions into verification conditions that can be
tackled by a first-order Satisfiability Modulo Theories (SMT)
solver. This translation is relevant for the verification of
programs that are written in languages that support com-
prehensions of this form. Since a first-order SMT solver does
not directly support the bound variables that occur in com-
prehension expressions, the challenge is to provide a sound
axiomatisation that is strong enough to prove interesting
programs and, furthermore, that can be used automatically
by the SMT solver. To our knowledge, this has not previ-
ously been done for off-the-shelf SMT solvers.

The way today’s leading SMT solvers deal with univer-
sally quantified expressions in their input is to heuristically
instantiate the quantifiers during the proof search. This
process can be steered by giving matching triggers in the
SMT-solver input [7]. A key to using such an SMT solver
effectively—and a central difficultly faced by those who gen-
erate verification conditions for SMT solvers (see, e.g.[10,
1]—lies in the design of appropriate matching triggers. In

this paper, we show and discuss the matching triggers we
use. Since the literature is scarce on practical guidance in
the design of matching triggers, we hope our description pro-
vides illumination also in other applications of SMT solvers.

We have designed and implemented our technique in the
Spec# program verifier [2]. The result is an environment
where, using a choice of Simplify [7] or Z3 [6] as the under-
lying SMT solver, we are able to verify the partial correct-
ness of several challenging programming examples from the
Dijkstra and Feijen book A Method of Programming [8].

2. PRELIMINARIES

2.1 Notation
In Fig. 1, we show a method SegSum , which sums the

elements in a segment of an array. We use the syntax of
Spec# [3] (which is similar to that of several other object-
oriented languages, including C#, Java, C++, and Python),
since we later include Spec# programs that we have com-
piled and verified using our encoding technique. Using the
sum comprehension

sum{int k in (i : j); a[k]} (1)

where k in (i : j) denotes the range i 6 k < j ,
SegSum ’s postcondition expresses the summation of the j−i
array elements starting with a[i] . Similarly, the loop invari-
ant says that s is the sum of the first n−i of these elements.

The general form of comprehension expressions that we
consider in this paper is

Q{int k in (L : H), F ; T} (2)

where Q is sum , count , product , min , or max ; k is
a bound variable of type integer; the integer expressions L
and H in the half-open interval (L : H) say that each value
of k satisfies L 6 k < H ; the boolean expression F is a
filter that further restricts the values of k under consider-
ation (if omitted, F defaults to true); and the integer (or
for count , boolean) expression T is the term of the com-
prehension. The bound variable k can occur free in F and
T , but not in L or H . The comprehension expression pre-
scribes the family of expressions T , for every k in the range
(L : H) that satisfies F . The value of the comprehension
is obtained by applying the (commutative and associative)
operator associated with Q (for example, + for sum) to
the expressions in this family.

As an example of a filter expression, comprehension (1)
can also be expressed as:

sum{int k in (0 : a.Length), i 6 k && k < j ; a[k]} (3)

2.2 Proofs
To verify the SegSum example presented above, it suffices

to know the following mathematical properties about sum
comprehensions:

empty range (∀ lo, hi • hi 6 lo ⇒
sum{int k in (lo : hi); a[k]} = 0)

induction (∀ lo, hi • lo 6 hi ⇒
sum{int k in (lo : hi + 1); a[k]} =
sum{int k in (lo : hi); a[k]}+ a[hi])

We need to include these and other properties as axioms
in the program verifier, in order for it to be able to verify
programs that use comprehensions.

2.3 Using Spec#
In languages such as Spec#, every method has a speci-

fication outlining a contract between its callers and its im-
plementations. The programmer writes each method and
its specification together in a source file before running the
verifier. The verifier is run like the compiler; either from
the IDE or the command line. In either case, this involves
just pushing a button, waiting, and then getting a list of
compilation/verification error messages, if they exist.

The Spec# program verifier works by translating com-
piled Spec# programs into the intermediate verification lan-
guage BoogiePL, from which it then generates verification
conditions for various SMT solvers [2]. BoogiePL is a simple
first-order language that includes mathematical functions,
arithmetic, and logical quantifiers, as well as syntax to indi-
cate matching triggers. For the purposes of this paper, there
are no significant differences between SMT-solver input and
BoogiePL, so we will render our formulas in BoogiePL syn-
tax.

Being a first-order language, BoogiePL (like the input of
SMT solvers) has no direct support for comprehensions or
binders, so the translation from Spec# into BoogiePL must
instead use some suitable encoding that includes the math-
ematical properties of the comprehensions that we wish to
support. Such an encoding will necessarily be incomplete,
but we hope to achieve an encoding that is good enough in
practice.

3. ENCODING COMPREHENSIONS AS
FIRST-ORDER EXPRESSIONS

The key strategy in our translation is the introduction
and axiomatisation of one BoogiePL function for each dif-
ferent comprehension template occurring in the Spec# pro-
gram. In our explanation of what that means, we use the
SegSum example from Fig. 1 as a running example. The
sum comprehension (1) has bound variable k with range
(i : j) , (implicit) filter true , and term a[k] . The Boo-
giePL translations of these expressions are i , j , true , and
ArrayGet($Heap[a, $elements], k) respectively. (To under-
stand this translation, think of every array as being an ob-
ject with one instance field, $elements , whose value is a
sequence of element values. The sequence is retrieved from
the heap, which is modelled as a two-dimensional array in-
dexed by object identities and field names, and the element
value is then retrieved using the function ArrayGet .)

3.1 Comprehension Functions
We consider the most general parameterisation of the ex-

pressions F and T in the comprehension (2), extracting
what we call the template of the comprehension. The tem-
plate is a triple whose first component is Q and whose
other two components are obtained by abstracting over the
(largest) subexpressions of the filter and term that do not
mention the bound variable. For example, the template of
comprehension (1) is

(sum, 2, ArrayGet(2, k))

Each “2” indicates a place where we have abstracted over a
subexpression. Here and throughout this section, we assume
the bound variable has some canonical name, and we’ll sim-
ply use k . Note that the range expressions L and H are
not part of the template. We write the general form of a
template as

(Q, Filter [[2 . . . 2, k]], Term[[2 . . . 2, k]]) (4)

with the understanding that Filter [[2 . . . 2, k]] and
Term[[2 . . . 2, k]] stand for expressions that can mention k
and some number of 2 ’s.

For each comprehension template, our translation intro-
duces a function. We shall refer to it as a comprehension
function and give it a name like Q#n where n is some
unique sequence number. For example, sum comprehension
(1) in program SegSum gives rise to the following compre-
hension function in our translation into BoogiePL:

function sum#0(lo : int, hi : int, a0: bool, a1: Elems)
returns (int);

The comprehension function takes as arguments the range
(expressed as the end points of a half-open interval), as well
as one argument for each “hole” 2 in the template. Intu-
itively, for a comprehension template (4), the comprehension
function has the following meaning:

Q#n(lo, hi , aa) =
Q

k∈(lo : hi) such that Filter [[aa,k]]
Term[[aa, k]]

where aa corresponds to as many arguments as there are
2 ’s in the template.

For example, comprehension function sum#0 above has
the meaning:

sum#0(lo, hi , a0, a1) =P
k∈(lo : hi) such that a0

ArrayGet(a1, k)

Using comprehension function sum#0, the sum compre-
hension (1) translates into BoogiePL as

sum#0(i , j , true, $Heap[a, $elements])

Notice how the filter and term of the template are part of
the intuitive meaning of sum#0, and how the subexpres-
sions that were abstracted over in the template find them-
selves as arguments in the translation of a particular sum
comprehension.

As another example, the sum comprehension (3) with a
filter has the following template:

(sum, 2 6 k ∧ k < 2, ArrayGet(2, k))

Thus, if both it and the sum comprehension (1) were present
in the same program, they would give rise to two different
comprehension functions. We present further details in [9].

3.2 Matching Triggers
For each comprehension function, our translation also gen-

erates a number of axioms. How the SMT solver instantiates
the quantifiers in these axioms is a crucial point in obtaining
the desired effect. In several SMT solvers, including Simplify
and Z3, this instantiation can be customised by supplying
matching triggers for the quantifiers [7]. Paying close atten-
tion to these triggers is a vital activity in designing program

verifiers that work with SMT solvers, so they play a central
role in our encoding.

A matching trigger of a universal quantifier is a set of
expressions that determines how the SMT solver instanti-
ates the quantifier. Logically, it is correct to instantiate a
universal quantifier with anything at all, but since most in-
stantiations are irrelevant to the verification goal, one can
hope for a more fruitful search by limiting which instantia-
tions the SMT solver is allowed to consider. When the SMT
solver’s search heuristics determine that it is time to look
at quantifiers, the solver’s ground terms (typically stored in
an e-graph data structure that tracks equivalence classes of
terms [12]) are compared against the triggers of the active
quantifiers. Ground terms that match the triggers are used
to instantiate the quantifiers.

Note that a universal quantifier that appears in a negative
position in an axiom is really an existential quantifier. The
SMT solver always Skolemises existential quantifiers, so we
need not worry about triggers for them.

Let us give some simple examples that demonstrate how
triggers are employed. Using BoogiePL syntax, which en-
closes triggers in curly braces, the quantifier

(∀ x : int, y : int • {g(x , y)} f (x) < y ⇒ g(x , y) = 100)

says that it is to be instantiated with terms x and y that
appear in the e-graph as arguments to the function g . In
order to be discriminating, a trigger must mention all bound
variables and cannot mention a bound variable by itself.
For example, {f (x)} is not a legal trigger for the quantifier
above, because it doesn’t limit the terms that can be used
to instantiate y , and likewise for {f (x), y} .

Typically, the terms mentioned in triggers also appear in
the body of the quantifier, but this is not a requirement.
For example, {h(x , y)} is a legal trigger for the quantifier
above.

Since matching is done in the e-graph in Simplify and
Z3, the congruence closure of all known terms is taken into
consideration. Stated differently, matching is done within
the theory of uninterpreted function symbols and equality
(EUF). But other theories are not taken into consideration.
For example,

(∀ x : int • {g(x + 1)} h(x) = g(x + 1))

would not match against either the term g(2 + y − 1) or
the term g(1 + y) , because the equalities of 2 + y − 1 and
y + 1, and of 1 + y and y + 1, are facts known to the deci-
sion procedure for the theory of linear arithmetic but may
never be propagated into the e-graph. In this way, using
interpreted functions like + in a trigger makes the trigger
fragile. The interpreted functions of interest in this paper
are + and − . Simplify enters given expressions that men-
tion + and − into the e-graph (as well as passing them onto
the arithmetic theory, which interprets the symbols), which
means they are available in matching, but with no regard to
their interpretation. In Z3, the interpreted symbols + and
− are not entered into the e-graph, so triggers that mention
+ and − will never give rise to any matches.

Some triggers are not limiting enough. For example,

(∀ x : int • {h(x)} h(x) < h(k(x)))

matches any argument of h , but when the quantifier is in-
stantiated, the instantiation produces a term with another

argument of h . Hence, if h(X) occurs in the e-graph, then
this quantifier will be instantiated with X , k(X) , k(k(X)) ,
. . . , causing a matching loop. A more limiting trigger for this
quantifier is {h(k(x))} , which does not cause a matching
loop.

3.3 Axioms
Back to our comprehensions. We show our axioms for sum

comprehensions; the others are similar.
For every comprehension template, our encoding intro-

duces not one, but two function symbols, sum#n and s#n
where their parameters lo and hi refer to the bounds of
the comprehensions range. A value satisfying the filter on
aa and from that range is generated from the heap. We
axiomatise these function symbols to be synonyms of each
other:

(∀ lo : int, hi : int, aa : T • {sum#n(lo, hi , aa)}
sum#n(lo, hi , aa) = s#n(lo, hi , aa))

Each sum comprehension in the Spec# program turns into a
term that uses sum#n , as we showed earlier in this section.
For all axioms below, we use s#n in all quantifier bodies,
but we sometimes use sum#n instead of s#n in quantifier
triggers. The effect of this encoding is that we can limit cer-
tain instantiations to avoid matching loops: since the bodies
of axioms only mention s#n , instantiations will not give rise
to any new sum#n terms. Note that the synonym axiom
above uses sum#n in its trigger (shown in curly braces),
not s#n ; thus, for each sum#n term in the input, the
SMT solver will generate an equivalent s#n term, but not
vice versa.

We provide a unit axiom, which we render as follows:

(∀ lo : int, hi : int, aa : T • {s#n(lo, hi , aa)}
(∀ k : int • lo 6 k ∧ k < hi ∧ Filter [[aa, k]]
⇒ Term[[aa, k]] = 0) ⇒ s#n(lo, hi , aa) = 0)

where Filter [[aa, k]] and Term[[aa, k]] stand for the filter and
term expressions of the comprehensions (as described in Sec-
tion 3.1). Note that the empty range property in the Sec-
tion 2.2 is a special case of the unit axiom. The trigger says
for the outer quantifier to be instantiated for every occur-
rence of s#n in the e-graph. The inner quantifier appears
in a negative position in the axiom, so we need not worry
about triggers for it.

It is important to be able to reason inductively about com-
prehensions, but induction axioms are susceptible to match-
ing loops. To avoid matching loops, we limit each sum#n
expression in the input to one instantiation of each induction
axiom, which we achieve by mentioning sum#n , not s#n ,
in the triggers. We provide four induction axioms altogether.
The induction below axioms relate s#n(lo, hi , aa) and
s#n(lo + 1, hi , aa) :

(∀ lo : int, hi : int, aa : T • {sum#n(lo, hi , aa)}
lo < hi ∧ Filter [[aa, lo]]
⇒ s#n(lo, hi , aa) = s#n(lo + 1, hi , aa) + Term[[aa, lo]])

(∀ lo : int, hi : int, aa : T • {sum#n(lo, hi , aa)}
lo < hi ∧ ¬Filter [[aa, lo]]
⇒ s#n(lo, hi , aa) = s#n(lo + 1, hi , aa))

and the induction above axioms relate s#n(lo, hi , aa)

and s#n(lo, hi − 1, aa) :

(∀ lo : int, hi : int, aa : T • {sum#n(lo, hi , aa)}
lo < hi ∧ Filter [[aa, hi − 1]]
⇒ s#n(lo, hi , aa) =

s#n(lo, hi − 1, aa) + Term[[aa, hi − 1]])
(∀ lo : int, hi : int, aa : T • {sum#n(lo, hi , aa)}

lo < hi ∧ ¬Filter [[aa, hi − 1]]
⇒ s#n(lo, hi , aa) = s#n(lo, hi − 1, aa))

Another way to avoid matching loops would be to use
{s#n(lo + 1, hi , aa)} as the trigger for the induction be-
low axioms and {s#n(lo, hi − 1, aa)} as the trigger for the
induction above axioms; however, these triggers are frag-
ile, because they mention the interpreted symbols + and
− , so they are of limited use with Simplify and of no use
with Z3. Our synonym encoding, on the other hand, works
with both Simplify and Z3.

The next axiom is the split range axiom:

(∀ lo : int, mid : int, hi : int, aa : T •
{sum#n(lo, mid , aa), sum#n(mid , hi , aa)}
{sum#n(lo, mid , aa), sum#n(lo, hi , aa)}
lo 6 mid ∧mid 6 hi
⇒ s#n(lo, mid , aa) + s#n(mid , hi , aa)

= s#n(lo, hi , aa))

Several remarks about the triggers are in order. First, each
trigger mentions two terms, because there is no single term
that covers all bound variables. Second, we give two triggers;
a match of either one gives rise to an instantiation of the
quantifier. From the point of view of symmetry, the possible
trigger

{sum#n(lo, hi , aa), sum#n(mid , hi , aa)}

is conspicuously absent. We omitted this trigger, because it
had a dramatically adverse impact on performance (for the
larger examples we report on in Section 5, including this
trigger slowed down the verifications by as much as a factor
of 35 with both Simplify and Z3). This slowdown is due to
the number of instantiations that are made. Third, the trig-
gers use sum#n , despite the fact that using s#n would not
lead to any matching loop here (repeated instantiations will
eventually lead to quiescence, because the set of terms used
among the first two arguments to s#n is not increased).
However, using s#n had a bad impact on performance (by
as much as a factor of 10 for our examples).

We also generate a same terms axiom:

(∀ lo : int, hi : int, aa : T , bb : T •
{sum#n(lo, hi , aa), s#n(lo, hi , bb)}
(∀ k : int • lo 6 k ∧ k < hi ⇒

(Filter [[aa, k]] = Filter [[bb, k]])∧
(Filter [[aa, k]] ⇒ Term[[aa, k]] = Term[[bb, k]]))

⇒ s#n(lo, hi , aa) = s#n(lo, hi , bb))

This axiom is the only one that relates two comprehension-
function applications with different arguments for the tem-
plate “holes”. It says the two function applications are equal
if the filters agree in the range (lo : hi) and, whenever the
filters hold for a k in that range, the terms for k are equal.
The inner quantifier appears in a negative position in the
axiom, so we need not worry about a trigger for it. For the
outer quantifier, we could have chosen the trigger

{s#n(lo, hi , aa), s#n(lo, hi , bb)}

without running the risk of matching loops, since instantiat-
ing the quantifier would not give rise to any s#n terms that
are not already required by this trigger. However, the trigger
with two s#n terms gave rise to unacceptable performance,
so we chose to use sum#n in one of the terms. We also tried
specifying both terms in the trigger with sum#n , but that
was too restrictive for our example programs, which some-
times need this axiom to be applied to terms generated by
the inductive axioms.

Finally, exclusively for min and max comprehensions,
we generate one more axiom, the distribution (of plus
over min/max) axiom (here shown for min , using func-
tions min#n and m#n):

(∀ lo : int, hi : int, aa : T , bb : T , D : int •
{min#n(lo, hi , aa) + D , m#n(lo, hi , bb)}
(∀ k : int • lo 6 k ∧ k < hi ⇒
(Filter [[aa, k]] = Filter [[bb, k]])∧
(Filter [[aa, k]] ⇒ Term[[aa, k]] + D = Term[[bb, k]]))
∧ (∃ k : int • lo 6 k ∧ k < hi ∧ Filter [[aa, k]]

∧Term[[aa, k]] + D = Term[[bb, k]])
⇒ m#n(lo, hi , aa) + D = m#n(lo, hi , bb))

Several remarks are in order. First, for nonempty ranges,
this axiom generalises the same terms axiom (with 0 for
D). Second, the nested universal quantifier appears in a
negative position, so we need not worry about a trigger for it,
but the trigger for the existential quantifier matters. What
makes a good trigger for it depends on the comprehension
template. Therefore, we specify no trigger, which puts us at
the mercy of the SMT solver’s heuristics to select a trigger
from the body of the quantifier. Third, given the nested
universal quantifier, the conjunct

Term[[aa, k]] + D = Term[[bb, k]]

in the body of the existential quantifier follows from the
other conjuncts. However, we include it to give the SMT
solver’s heuristics a better chance of finding some trigger.
Fourth, in the case where Filter [[aa, k]] does not actually
depend on k (which happens in the common case where the
comprehension uses no filter at all), we replace the existen-
tial quantifier by

lo < hi ∧ Filter [[aa, k]]

Fifth, the trigger of the outer quantifier is problematic. It
mentions + and is therefore fragile. For our examples, this
fragility does not cause a problem for Simplify, but it renders
the axiom useless for Z3.

3.4 Adequacy of the Axiomatisation
We make a few remarks about the adequacy of our ax-

iomatisation.
First, notice that all axioms concern just one comprehen-

sion function: there is no axiom that relates two different
comprehension functions. For example, since sum compre-
hension (1) has a different template than sum comprehen-
sion (3), they give rise to different comprehension functions.
Thus, if the sum comprehension in the loop invariant in the
SegSum method were changed to the form (3) that uses the
filter, then the verification would not be able to establish
the postcondition (which is written in the form (1)) after
the loop. Although some verifications could benefit from
axioms that relate different comprehension functions, this

was not necessary for any of the textbook examples that we
looked at. This is because their loop invariants and postcon-
ditions are written in the same style. We recommend that
when writing specifications, this similarity between loop in-
variants and postconditions is maintained.

Second, our use of sum#n instead of s#n in some trig-
gers limits the number of quantifier instantiations. However,
the instantiations are adequate for the examples we tried.
Also, using Simplify as the SMT solver, we have not expe-
rienced any problems with the fragile trigger of the distri-
bution axiom. The lack of an effective distribution axiom
for Z3 means that it cannot verify examples like Minimal
Segment Sum (Section 4.3).

Third, trigger issues aside, the collection of axioms we
have provided seems plausibly adequate in that ranges of
size 0 or 1 can be addressed by the unit and induction
above axioms, and all larger ranges can be addressed by
decomposing them into smaller ranges with the split range
axiom. For example, it is not necessary to include the in-
duction below axiom that enlarges the range at the lower
end, as the effect of that axiom can be achieved by first rea-
soning about the ranges (lo : lo + 1) and (lo + 1 : hi) and
then using the split range axiom.

However, triggers are an issue. Omitting the induction
below axiom from our axiomatisation prevents the verifi-
cation of programs that iterate backwards. Such a pro-
gram could be verified using the induction above and
split range axioms as just described, but the needed ax-
iom applications are not triggered automatically. In cases
like this, it is possible, as an advanced feature, to intro-
duce expressions in the Spec# source code that will trigger
the instantiation of axioms. For example, adding the assert
statement assert a[n] == sum{int k in (n : n +1); a[k]};
before modifying the variable s in Fig. 2, would be enough
to make this program verify even without the induction
below axiom. Simply mentioning the sum comprehension
over the range (n : n + 1) acts as a prover directive causing
the appropriate axiom to be instantiated. However, this is
not a solution that we recommend, since adding such prover
directives puts a much higher burden on the specifier.

public static int Sum2(int[] a)
ensures result == sum{int i in (0 : a.Length); a[i]};
{

int s = 0;
for (int n = a.Length; 0 6 −−n;)

invariant 0 6 n && n 6 a.Length;
invariant s == sum{int i in (n : a.Length); a[i]};

{
s += a[n];

}
return s;
}

Figure 2: A program that sums an array’s elements
starting from its last element using a loop invari-
ant that focuses on what has been summed so far.
Our induction below axiom allows the verification of
programs that have this form.

4. SOME MORE DIFFICULT EXAMPLES
We now report on our experience of using our encoding,

public static int CoincidenceCount1(int[] f , int[] g)
requires forall{int i in (0 : f .Length),

int j in (0 : f .Length), i < j ; f [i] < f [j]};
requires forall{int i in (0 : g.Length),

int j in (0 : g.Length), i < j ; g[i] < g[j]};
ensures result == count{int i in (0 : f .Length),

int j in (0 : g.Length); f [i] == g[j]};
{
int ct = 0; int m = 0; int n = 0;
while (m < f .Length && n < g.Length)
invariant ct == (I0)

count{int i in (0 : m), int j in (0 : n); f [i] == g[j]};
invariant m 6 f .Length && n 6 g.Length &&
(m == f .Length || forall{int j in (0 : n); g[j] < f [m]})

&&
(n == g.Length || forall{int i in (0 : m); f [i] < g[n]})
{

if (f [m] < g[n]) { m++; }
else if (g[n] < f [m]) { n++; }
else { ct++; m++; n++; }

}
return ct ;
}

Figure 3: A solution to the Coincidence Count prob-
lem, written in Spec#. Giving multiple binders for
a comprehension is a shorthand for nesting multiple
comprehensions; for a count comprehension with
multiple binders, the innermost comprehension re-
mains a count whereas the enclosing ones are sum
comprehensions.

implemented in Spec#, to verify some more challenging ex-
amples, including some programming problems described by
Dijkstra and Feijen [8]. We begin with an example that il-
lustrates the use of alternative loop invariants.

4.1 Variations of Summing
There are two main ways that a loop can iterate over a

number of items to compute a property expressed by a com-
prehension, namely forward and backward. And for each of
these ways, there are two main ways to write the associated
loop invariant, either describing what has been computed so
far or what is yet to be computed (cf. Fig. 2). The verifica-
tion of the corresponding four programs [9] collectively make
use of both the induction below and induction above
axioms, and trigger these with different terms. Our verifier
verifies all of these programs, in a fraction of a second, as
seen in the performance numbers in Fig. 8.

4.2 Coincidence Count
The coincidence count of two given integer arrays, each of

which is arranged in strict increasing order, is the number
of values occurring in both arrays. This problem is included
in the book of Dijkstra and Feijen [8]. A solution to this
problem is shown in Fig. 3, while a less efficient version
(called CoincidenceCount0) is presented in [9].

To get a better sense of how our axioms are used to prove
this program, we now show the main ideas in the proof of
the loop body. Please note: for this presentation, we will
use Spec# notation; the proofs at the level of the BoogiePL
encoding or the verification condition it gives rise to would
be similar, just bigger. We will show a proof sketch for the
maintenance of invariant (I0), which is a shorthand for the

ct == sum{int i in (0 : m + 1);
count{int j in (0 : n); f [j] == g[j]}};

⇐ < by induction above axiom of sum >
ct == sum{int i in (0 : m);

count{int j in (0 : n); f [j] == g[j]}};
+ count{int j in (0 : n); f [m] == g[j]}

⇐ < by the invariant >
0 == count{int j in (0 : n); f [m] == g[j]}
⇐ < by unit axiom of the count comprehension >

forall{int j in (0 : n); f [m] 6= g[j]}
⇐ < by the invariant >

true

Figure 4: A sketch of the correctness argu-
ment that the if branch f [m] < g [n] in program
CoincidenceCount1 maintains invariant (I0).

ct == sum{int i in (0 : m);
count{int j in (0 : n + 1); f [j] == g[j]}};

⇐ < by the invariant >
sum{int i in (0 : m);

count{int j in (0 : n); f [j] == g[j]}};
== sum{int i in (0 : m);

count{int j in (0 : n + 1); f [j] == g[j]}};
⇐ < by same term axiom of sum >

forall{int i in (0 : m); count{int j in (0 : n); f [i] == g[j]}
== count{int j in (0 : n + 1); f [i] == g[j]}}

⇐ < by induction above axiom of count >
forall{int i in (0 : m); f [i] 6= g[n]}
⇐ < by the invariant >

true

Figure 5: A sketch of the correctness argument
that the else if branch g [n] < f [m] in program
CoincidenceCount1 maintains invariant (I0).

nested comprehension

ct == sum{int i in (0 : m);
count{int j in (0 : n); f [j] == g [j]}};

In Figs. 4, 5, and 6, we consider the three respective branches
of the if statement in the body of the loop. We show that
(I0), suitably modified by the assignments in each if branch,
follows from loop invariants and the enclosing guards. The
nested comprehensions make this verification interesting:
while induction can be readily applied to the outer com-
prehension, one first has to apply the same term axiom
to the outer comprehension in order to apply induction to
the inner comprehension. The main issue in the automatic
verification of this program is triggering the instantiation of
the various axioms.

The program in Fig. 3 can also be verified using an al-
ternative loop that focuses on what is left to compute, see
Fig. 7. Dijkstra and Feijen, who consider the derivation of
a program from its specification, comment that this alter-
native invariant “leads more inevitably” [8] to this solution.
This solution also verifies automatically using our encoding,
using deductions similar to those described above.

4.3 Minimal Segment Sum
The minimal segment sum of a given integer array a is the

minimum of all segment sums, calculated for all segments
a[i], a[i + 1], . . . , a[j − 1] where 0 6 i 6 j 6 a.Length . This
problem is also considered by Dijkstra and Feijen [8] (and a

ct + 1 == sum{int i in (0 : m + 1);
count{int i in (0 : n + 1); f [j] == g[j]}};

⇐ < by induction above axiom of sum >
ct + 1 == sum{int i in (0 : m);

count{int j in (0 : n + 1); f [j] == g[j]}}
+ count{int j in (0 : n + 1); f [m] == g[j]}

⇐ < by induction above axiom of count >
ct + 1 == sum{int i in (0 : m);

count{int j in (0 : n + 1); f [j] == g[j]}}
+ count{int j in (0 : n); f [m] == g[j]}+ 1

⇐ < by unit axiom of count >
ct == sum{int i in (0 : m);

count{int j in (0 : n + 1); f [j] == g[j]}}
&& forall{int j in (0 : n); f [m] 6= g[j]}

⇐ < by the invariant >
ct == sum{int i in (0 : m);

count{int j in (0 : n + 1); f [j] == g[j]}}
⇐ < by the calculation in Fig. 5 >

true

Figure 6: A sketch of the correctness argument
that the else branch g [n] == f [m] in program
CoincidenceCount1 maintains invariant (I0).

invariant m 6 f .Length && n 6 g.Length;
invariant ct + count{int i in (m : f .Length),

int j in (n : g.Length); f [i] == g[j]}
== count{int i in (0 : f .Length),

int j in (0 : g.Length); f [i] == g[j]};

Figure 7: A different invariant for the Coincidence
Count solution in Fig. 3. This invariant can be used
in lieu of the one in Fig. 3 to yield the program
CoincidenceCount2 , as we refer to it in our Fig. 8 per-
formance summary.

Spec# version called MinSegmentSum is presented in [9]).
The specification of the problem uses a sum comprehension
nested inside two minimum comprehensions.

The main issue in the automatic verification of this pro-
gram is triggering the instantiation of the split range ax-
iom. The inclusion of the second trigger for the split range
axiom gets used here, and the program is automatically ver-
ified. The verification also requires the fragile distribution
axiom, which means our verifier is unable to prove the pro-
gram using Z3.

5. EVALUATION
Many of the difficulties met during our program verifica-

tions (which we did while developing the axioms and trig-
gers we have described) were in trying to diagnose error
messages. Error messages need to be made more descrip-
tive, particularly for use in a learning environment. Much
of the confusion comes from uncertainty about how to pro-
ceed when an error is found; do we rewrite the specification,
correct the program, or assist the verifier by adding assert
statements?

The overall performance of the verifier is acceptable. Fig-
ure 8 shows the times required to verify a number of pro-
grams using two SMT solvers: Simplify and Z3. In most
cases, the Z3 solver verifies the programs slightly faster than
Simplify. However, Simplify succeeds in verifying all of our
examples whereas Z3 does not. Factorial cannot be verified

Program Ref Simplify Z3
Sum0 [9] 0.219 0.172
Sum1 [9] 0.063 0.016
Sum2 Fig. 2 0.047 0.016
Sum3 [9] 0.110 0.016
Factorial 0.172
CoincidenceCount0 [9] 6.017 1.815
CoincidenceCount1 Fig. 3 18.970
CoincidenceCount2 Fig. 7 12.907 1.16
MinSegmentSum [9] 16.063

Figure 8: Performance measurements (in seconds)
of program verifications taken on a Core 2 Duo lap-
top, running at 2.33GHz with a 4MB L2 cache. The
version of the Spec# static program verifier used is
the July 2007 release.

by Z3 as multiplications by non-constants are, in the current
Z3 version, essentially ignored. Simplify is willing to treat
such multiplications as uninterpreted functions and hence it
can verify the program.

The verification of MinSegmentSum requires the distri-
bution of + over the min comprehension, and since the
trigger of our distribution axiom mentions +, Z3 cannot
verify the program. We do not fully understand why Z3
cannot verify CoincidenceCount1. If we remove the first
of the two triggers for the split range axiom for the outer
count comprehension, then Z3 verifies the program in less
than 2 seconds. The problem therefore seems related to the
first of these triggers setting off a chain of instantiations that
prevent Z3 from completing the verification.

6. RELATED WORK
Paulson and Meng [11] present work on translating

Isabelle/HOL [13] to first-order logic. Their motivation is to
improve the automation of interactive provers by integrat-
ing them with automatic provers which are usually based
on first-order logic. Much of their work focuses on trans-
lating Isabelle’s axiomatic type classes to first-order logic
predicates and Isabelle types to first-order logic terms so
that type information present in Isabelle/HOL is not lost
during the translation. Comprehensions are a special form
of higher-order functions, but our translation of them into
first-order logic does not require carrying type information.

Perfect Developer [5, 4], an automatic specification and
verification environment, uses a custom theorem prover to
provide support for comprehensions like the ones we have
considered here. In some ways, Perfect Developer provides
more flexible support (allowing programmers to define their
own operators that apply to sequences, sets, and multisets),
whereas in other ways, we provide more flexible support (di-
rectly allowing comprehensions to apply to arbitrary terms,
not just the elements of sequences, and supporting programs
that use filtered subsequences and reverse summations). We
hope to learn how to combine the techniques of the two tools.

7. CONCLUSIONS AND FUTURE WORK
We have designed and implemented support for summation-

like comprehensions in the Spec# program verifier. Our
technique extracts templates from the comprehensions used
in the program to be verified, introduces functions for these
templates, and generates axioms about the functions. As

a byproduct of describing our design, our paper also con-
tributes something of a tutorial on using matching triggers,
which is a crucial point in encoding verification problems for
SMT solvers.

Our axiomatisation is of a modest size, and our approach
can automatically verify some challenging textbook exam-
ples. Yet, several challenges lie ahead. One challenge is
to do a better job of explaining error messages to users.
Another is to overcome the trigger fragility problem of ax-
ioms like distribution. Yet another challenge lies in taking
on more programs that use comprehensions, like Minimum
Distance or Maximal Monotone Subsequence [8]. Such pro-
grams may rely on mathematical properties that are specific
to the problem, so a challenge is to find a balance between
the set of axioms built into the tool and an easy-to-use,
sound mechanism by which users can extend that axioms
set.

Another direction for future work, which in fact was the
original motivation behind our work described in this paper,
is to employ more tool support in the teaching of program
correctness. Because of the immediate feedback they pro-
vide, tools can help cement some of the program-correctness
concepts in the minds of students. Many textbooks on pro-
gram correctness use as their illustrative examples simple
programs that solve problems in familiar mathematical do-
mains, such as arithmetic, which includes the summation
comprehension. Our technique and implementation take us
a step closer to providing program-correctness tools for stu-
dents. With more such steps, we hope to develop tool sup-
port for a larger repertoire of programs used in educating
students.

8. ACKNOWLEDGEMENTS
We thank the participants of the IFIP WG 2.3 meeting in

Sydney, January 2007 and the referees and participants at
the FTfJP 2007 workshop for serving as a springboard for
the initial ideas.

9. REFERENCES
[1] A. Banerjee, M. Barnett, and D. A. Naumann. Boogie

meets regions: A verification experience report. In
Natarajan Shankar and Jim Woodcock, editors,
Verified Software: Theories, Tools, Experiments,
VSTTE 2008, volume 5295 of Lecture Notes in
Computer Science, pages 177–191. Springer, October
2008.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,
and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. de Roever, editors,
FMCO 2005, volume 4111 of Lecture Notes in
Computer Science, pages 364–387. Springer,
September 2006.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In
G. Barthe, L. Burdy, M. Huisman, J. Lanet, and
T. Muntean, editors, CASSIS 2004, volume 3362 of
Lecture Notes in Computer Science, pages 49–69.
Springer, 2005.

[4] G. Carter, R. Monahan, and J. M. Morris. Software
refinement with Perfect Developer. In B. K. Aichernig

and B. Beckert, editors, SEFM 2005, pages 363–373.
IEEE Computer Society, September 2005.

[5] D. Crocker and J. Carlton. A high productivity tool
for formally verified software development. Technical
report, Escher Technologies, September 2004.
http://www.eschertech.com/papers/pdpaper.pdf.

[6] L. de Moura and N. Bjørner. Efficient E-matching for
SMT solvers. In F. Pfenning, editor, CADE-21,
volume 4603 of Lecture Notes in Computer Science,
pages 183–198. Springer, July 2007.

[7] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. Journal of the
ACM, 52(3):365–473, May 2005.

[8] E. W. Dijkstra and W. H. J. Feijen. A method of
programming. Addison-Wesley, July 1988.

[9] K. R. M. Leino and R. Monahan. Automatic
verification of textbook programs that use
comprehensions. 9th Workshop on Formal Techniques
for Java-like Programs, FTfJP 2007, 2007.

[10] S. Lerner, T. Millstein, and C. Chambers.
Automatically proving the correctness of compiler
optimizations. In PLDI 2003, pages 220–231. ACM
Press, 2003.

[11] J. Meng and L. C. Paulson. Translating higher-order
problems to first-order clauses. In G. Sutcliffe,
R. Schmidt, and S. Schulz, editors, ESCoR 2006:
Empirically Successful Computerized Reasoning,
volume 192 of CEUR Workshop Proceedings, pages
70–80. http://ceur-ws.org, 2006.

[12] G. Nelson. Techniques for program verification.
Technical Report CSL-81-10, Xerox PARC, June 1981.
The author’s PhD thesis.

[13] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL: A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

