Modularising and Promoting Interoperability for
Event-B Specifications using Institution Theory

Maynooth
University

National University
of Ireland Maynooth

L

Marie Farrell, Rosemary Monahan & James F. Power

Department of Computer Science

‘@, IRISH RESEARCH COUNCIL
An Chombhairle um Thaighde in Eirinn

Maynooth University
Maynooth, Co. Kildare, lreland

Introduction & Motivation

Event-B is an industrial-strength language for system-level modelling and ver-
ification that combines an event-based logic with basic set theory:.

= Event-B supports formal refinement, which allows a developer to write an
abstract specification of a system and gradually add complexity:.

« The Rodin Platform, an IDE for Event-B., ensures the safety of system
specifications and refinement steps by generating appropriate
proof-obligations, and then discharging these via support for various
theorem provers [2].

Limitations of Event-B

Modularity: Event-B lacks well-developed modularisation constructs and
it is not easy to combine specifications in Event-B with those
written in other formalisms [1]. Notice how, in Figure 1 the same
specification has to be provided twice. The events set_peds_go
and set peds_stop are equivalent, modulo renaming of

variables, to set _cars_go and set _cars_stop.

Interoperability: When developing software using Event-B, it is at least
necessary to transform the final concrete specification into a
different language to get an executable implementation. Current
approaches to interoperability in Event-B consist of a range of

Building an Institution for Event-B, £V7T

Our institution, EVT, for Event-B consists of the following definitions:

= A signature over £V describes the permitted vocabulary to use when
writing Event-B specifications, consisting of names for sorts, operations,
predicates, events and variables. Signature morphisms provide a
mechanism for moving between vocabularies and mapping the
corresponding sentences and models in a similar fashion.

« A sentence over £VT is an Event-B specification written using this
vocabulary. Such sentences can be evaluated in a model.

« An VT model consists of possible before-after value pairs for each
variable in each event.

Further details and proofs can be found on our website:
http://www.cs.nuim.ie/~mfarrell

A Modular Traffic Light System

By defining £V and carrying out the appropriate proofs, we gain access
to an array of generic specification building operators [3]. These facilitate
the combination (and, +, U), extension (then), hiding (hide via, reveal) and
renaming via signature morphism (with) of specifications. Thus EVT provides
a means for writing down and splitting up the components of an Event-B
system, facilitating increased modularity for Event-B specifications. Figure 2
is a presentation (set of sentences) over the institution EV7T corresponding to

Rodin-based plugins to translate to/from Event-B, but these often

lack a solid logical foundation.

Adding Event-B to the theory supermarket

= We have identified the theory of institutions as a suitable metalogical
framework in which to provide a specification of the Event-B specification

language.

« In order to represent a formalism /logic using institutions, the syntax and
semantics for the formalism must first be defined and verified in a uniform
way using some basic constructs from category theory [3].

« It is necessary to verify that the resulting metalogical structure is actually
a valid institution. This is ensured by proving the satistaction condition
which states in formal terms the basic maxim of institutions, that “truth is

invariant under change of notation”.

the Event-B machine mac1 defined in Figure 1.

Our Contributions

Modularity: Representing Event-B in this way provides us with a

mechanism for combining and parameterising specifications. Most

importantly, these constructs are formally defined, a crucial issue
for a language used in formal modelling.

Interoperability: Institution comorphisms can be defined enabling us to

move between different institutions, thus providing a mechanism
by which a specification written over one institution can be
represented as a specification over another. Devising meaningtul
institutions and corresponding morphisms to/from Event-B

provides a mechanism for not only ensuring the safety of a

particular specification but also, via morphisms, a platform for

integration with other formalisms and logics.

1 MACHINE maci 1 spec TwoBooLs over FOPEQ

2 VARIABLES 2 BooL then

3 cars-go, peds_-go 3 ops 1-go, u-go : Bool

4 TINVARIANTS 4 preds = (i_.go = true N u_go = true)

5 invli: cars_.go € BOOL 5 spec LIGHTABSTRACT over EVT

6 inv2: peds.go € BOOL 6 TwoBooLs then

7 inv3: — (peds_go = true A cars_-go = true) 7 Initialisation

8 EVENTS 8 actl : i_go := false

9 Initialisation 9 Event set_go =

10 actl: cars_go := false 10 when grdl: u_-go = false

11 act2: peds_go := false 11 then actl: 2.go := true

12 Event set_peds_go = 12 Event set_stop =

13 when grdl: cars_.go = false 13 then actl: 1.go := false

14 then actl: peds_go := true 14 spec mMacl over EVT

15 Event set_peds_stop = 15 (LIGHTABSTRACT with o031) and (LIGHTABSTRACT with o03)
16 actl: peds_go := false 16 where

17 Event set_cars_go = 17 o1 = {i-go— cars_go, u_gor— peds_go,

18 when grdl: peds_-go = false 18 set_go > set_cars_go, set_stop— set_cars_stop}
19 then actl: cars_go := true 19 o2 = {i-go— peds_go, u_go+> cars_go,

20 Event set_cars_stop = 20 set_go > set_peds_go, set_stop+— set_peds_stop}
21 actl: cars.go := false Fig.2: A modular institution-based presen-

Fig. 1: Event-B machine specification for a traffic
system, with each light controlled by boolean flags.

macl in Fig 1.

tation corresponding to the abstract machine

[1] A. lliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. llic, and T. Latvala. Supporting reuse in Event-B development: Modularisation approach. In Abstract State Machines, Alloy, B and Z, volume 5977 of LNCS, pages 174-188. 2010.
[2] M. Jastram and P. M. Butler. Rodin User’s Handbook: Covers Rodin V.2.8. CreateSpace Independent Publishing Platform, USA, 2014.

[3] D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Springer, 2012.

http://www.cs.nuim.ie/~mfarrell

