
An empirical study into how modularisation can be
applied to program verification

Andrew Healy ahealy@cs.nuim.ie
Principles of Programming Research Group

Department of Computer Science
Maynooth University

Supervisors: Dr. Rosemary Monaghan and Dr. James Power

Abstract:

The benefits of modularisation techniques for software development are clear and well understood.
The ability to consider systems at multiple levels of abstraction helps to reduce their inherent
complexity (and complexity is invariantly a characteristic of large software projects). When the
correctness of such projects needs to be verified by formal means, it stands to reason that this task
should benefit from modularisation. Verification would benefit from the ability to prove parts of the
program in question independently from each other. This would encourage a style of verification
that is closer to how programs are naturally developed – piece by piece, making extensive use of
previously developed components; verification time would be significantly reduced and the
correctness of components (such as libraries) could be trusted without knowledge of their
implementation details.

Unfortunately the modularisation constructs that are used in software development (classes,
modules, packages, methods etc.) do not have corresponding concepts in the verification process.
Instead, source code must undergo a series of transformations before we have proved that it matches
its specifications. A typical verification scenario can be thought of as involving three steps. Each of
these steps can be seen as a modular part of the overall procedure: (1) source code is annotated with
pre- and post-conditions, invariants, etc., to ensure correct behaviour according to specifications; (2)
the program is translated to verification conditions by software that interprets the programs and
annotations applied in step 1; (3) the verification conditions are written as a number of boolean
formulas (goals) that the SMT (Satisfiability Modulo Theories) solver can understand, and these
conditions are proved hold or not (often through the use of constraint propagation). As the name
would suggest, each SMT solver can only return answers to queries posed in particular logical
theories.

This year my research has taken the form of a survey of the uses of modularisation in verification
systems – mainly focussing on steps 2 and 3 as outlined above. I have taken the verification
condition generation performed by the Why3 platform as a case study with a particular emphasis on
how it stores information about the goals generated and the results of applying a particular SMT
solver to those goals. This means that when Why3 identifies that a program has changed between
verification sessions, only the parts that have changed need to be re-verified. I have also looked at
the theories (and their associated decision procedures) that make up SMT solvers as modular
constructs. I have compared the operation of two popular and efficient SMT solvers (CVC4 and Z3)
by using profiling and code coverage tools on two sets of benchmarks: (1) those from the program
verification domain (using verification competition problems as input); and (2) benchmarks written
specifically to test SMT solvers from the SMT-LIB project repository. This talk will present an
outline of the problem domain and questions I would like to answer with my research.

mailto:ahealy@cs.nuim.ie

