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Abstract. The ‘low-volatility anomaly’ is the counter-intuitive obser-
vation that portfolios of low-volatility stocks tend to yield higher risk-
adjusted returns than portfolios of high-volatility stocks. In this article
we investigate if the anomaly holds, not only for portfolios consisting
of individually low-volatility stocks, but for portfolios that have been
optimised to minimize aggregate volatility. We exploit patterns in his-
torical price fluctuations to identify optimized portfolios whose aggre-
gate volatility is expected to remain low. These portfolios are evalu-
ated by comparing them against the performance of market capitaliza-
tion and low-volatility quintile benchmarks out-of-sample. The results
reveal that, as well as outperforming the market, both in terms of re-
turns and risk, optimized low-volatility strategies also outperform the
S&P Low-Volatility Index. These findings provide further support for a
low-volatility effect, and imply that the root of the anomaly may lie with
a failure to exploit diversification opportunities.

Keywords: low-volatility anomaly; portfolio optimization; buy-and-hold
portfolio; variance minimization; diversification; out-of-sample testing

1 Introduction

The Capital Asset Pricing Model (CAPM) states that the returns of a given
stock should be a linear function of its beta (i.e. market risk). In other words,
returns should reflect how risky a stock is relative to the market. Surprisingly,
this prediction does not match observations: Over the last 50 years low-volatility
portfolios across the world have offered an enviable combination of high aver-
age returns and small drawdowns, bucking the intuition that risk should be
compensated with higher expected profits (e.g. [1]; [2]; [3]). The deviation is so
compelling that Baker, Bradley and Wurgler [3] have proposed it as a candidate
for “the greatest anomaly in finance”.
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There remains some debate as to whether the anomaly is real, insofar as it
can be exploited in practice [16]. It may be the case that the anomaly is small
enough that it would be eaten away by transaction costs, or that it reflects
some statistical quirk such as future bias. A further question concerning the
low-volatility anomaly is whether it occurs at the level of individual stocks,
or whether it can be further enhanced by exploiting the relationships between
stocks.

Our study seeks specifically to address these three questions. First, we ap-
ply a buy-and-hold strategy, which has minimal associated trading costs as no
rebalancing is required. Second, we apply our strategy out-of-sample, develop-
ing the portfolio based on historical data and thus removing any possibility of
future bias. Third, we develop our portfolios so as to exploit the relationships be-
tween stocks, driving volatility even lower in a bid to enhance performance. We
track the performance of our portfolios into the future, to see how they perform
relative to the market and other low-volatility benchmarks.

Before detailing our strategy we first review some of the evidence supporting
a low-volatility effect.

2 Evidence of a low-volatility anomaly

Investigating a broad sample of international developed markets, Ang et al.
[4] found that stocks with recent past high idiosyncratic volatility had lower
future average returns. Across 23 markets, the adjusted difference in average
returns between highest and lowest quintile portfolios, sorted by volatility, was
-1.31% per month. This effect was found to be individually significant for every
G7 country (Canada, France, Germany, Italy, Japan, the United States, and
the United Kingdom), suggesting that the relation between high idiosyncratic
volatility and low returns is not just a sample-specific or country-specific effect,
but a global phenomenon.

Blitz and van Vliet [5] provided further empirical evidence that stocks with
low-volatility earn higher risk-adjusted returns than the market portfolio, even
after controlling for well-known effects such as value and size. They found that
the annual alpha spread of global low versus high-volatility decile portfolios
amounted to 12% over the 1986-2006 period, observing independent effects in
the US, European and Japanese markets.

Baker and Haugen [6] analysed 33 different markets during the time period
from 1990-2011, including non-survivors. They computed the volatility of total
return for each company in each country over the previous 24 months, rank-
ing stocks by volatility and grouping them into deciles. In each one of the 21
developed countries, the lowest volatility decile had both lower risk and higher
return, leading to substantial divergence in Sharpe ratios.

In another study, Clarke, de Silva and Thorley [2] found that minimum vari-
ance portfolios, based on the 1,000 largest US stocks over the 1968-2005 period,
achieved a volatility reduction of about 25%, while delivering comparable, or
even higher, average returns than the market portfolio.



Further Evidence in Support of the Low-Volatility Anomaly 3

Ang et al. [4] have pinpointed U.S. markets as the source of the anomaly.
Specifically, they found that the low-volatility anomaly in international markets
strongly co-moves with the anomaly for U.S. stocks. After controlling for U.S.
portfolios, the alphas (i.e. risk-adjusted overperformance relative to the market)
of portfolio strategies trading the idiosyncratic volatility effect in various inter-
national markets prove insignificant. Thus, Ang et al. [4] argue that the global
idiosyncratic volatility effect is captured by a simple U.S. idiosyncratic volatility
factor. In the following sections we consider some possible explanations for the
existence of this U.S.-based anomaly.

2.1 Longshot payoffs

One possible explanation is that people are predisposed to express risk-seeking
utility towards longshot payoffs whilst expressing risk aversion towards lower
volatility returns (see prospect theory; [7]).

Buying a low-priced, volatile stock is like buying a lottery ticket: There is a
small chance of it multiplying significantly in value in a short period, and a much
larger chance of it declining in value [3]. Kumar [8] found that some individual
investors do show a clear preference for stocks with lottery-like payoffs, measured
as idiosyncratic volatility or skewness. Applying Tversky and Kahneman’s [7]
cumulative prospect theory approach, Barberis and Huang [9] concluded that a
positively skewed stock can be overpriced because of its skewness, and thus earn
a negative average excess return.

Shefrin and Statman [10] point out that buying many stocks destroys upside
lottery potential, while buying a few volatile stocks leaves upside potential in-
tact. This way of thinking is consistent with the finding that most naive private
investors only hold about 1-5 stocks in their portfolio, thereby largely ignoring
the diversification benefits that are available within the equity market [5]. This
effect may cause high-risk stocks to be overpriced and low-risk stocks to be un-
derpriced [5]. According to Jiang, Xu and Yao [11], the idiosyncratic volatility
anomaly is indeed stronger among stocks with a less sophisticated investor base,
as would be expected if the anomaly had a behavioural origin.

2.2 Lack of leverage

Baker and Haugen [6] argue that the root of the anomaly lies with the structure
of the investment environment. They posit that the compensation structures and
internal stock selection processes at asset management firms motivate managers
to hold more volatile stocks and shun low-risk stocks.

Leverage is needed to take advantage of the low-volatility anomaly: investors
need to hold greater volumes of stock in order to achieve the same level of risk.
If a low risk stock portfolio has a volatility which is, say, two-thirds of that of the
market, then 50% leverage needs to be applied in order to obtain the same level
of volatility as the market. While this might seem straightforward in practice,
many investors are not in a position to apply leverage, and thus cannot exploit
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the opportunity [5]. Borrowing restrictions were originally identified by Black
[12] as an argument for the relatively good performance of low-beta stocks.

Although precise statistics are elusive, it appears that relatively few mutual
funds use leverage. For example, Baker, Bradley and Wurgler [3] spot-checked
and found that the five largest active domestic equity mutual funds did not use
any leverage as of 1st July 2010. Furthermore, the Investment Company Act of
1940 actually prohibits U.S. mutual funds from using more than 33% leverage.

Baker, Bradley and Wurgler [3] also point out that the typical institutional
investor’s mandate to beat a fixed benchmark discourages arbitrage activity for
both high-alpha, low-beta stocks and low-alpha, high-beta stocks, since these
are unlikely to simultaneously track and surpass the benchmark.

As it turns out, such benchmarking is common: 61% of U.S. mutual fund
assets are benchmarked to the S&P 500, and 95% are benchmarked to some
popular U.S. index [13]. Under current U.S. SEC rules, all mutual funds must,
in their prospectus, select a benchmark and express the returns of the fund
relative to that benchmark [3].

The focus on these benchmarks means that institutional investment managers
are less likely to exploit the low-volatility anomaly, especially when leverage is
not available (see [14]). Instead, an investment manager that is seeking to surpass
a fixed benchmark without access to leverage is better off exploiting mispricings
among stocks with close to market risk (i.e., a beta near 1).

Money tends to be invested in asset classes that have performed well in the
past, and with asset managers who have demonstrated above average perfor-
mance [5]. For this reason, outperformance in up markets may be more desirable
than outperformance in down markets [5]. Asset managers may thus be willing
to overpay for stocks which are inclined to outperform in up markets; these tend
to be high-volatility stocks. At the same time, they are likely to underpay for
stocks which outperform in down markets, which tend to be low-volatility stocks
[5].

All of these factors combine to produce a low-volatility anomaly, whose
essence is that low risk is undervalued relative to high risk [3]. In a bench-
marked world without access to sufficient leverage, the low-volatility anomaly
emerges as a natural consequence.

2.3 Betting against beta

The concept of volatility is closely related to that of beta coefficient, which
describes the volatility of an asset relative to the market, in essence the correlated
relative volatility (by definition the market has a beta of 1). In line with other
findings on the low-volatility anomaly, Black [12] found that, in the period from
1931 to 1965, low-beta stocks in the U.S. did better than the capital asset pricing
model (CAPM) predicts, while high-beta stocks did worse.

Frazzinia and Pedersen [15] provided empirical evidence that portfolios of
high-beta assets have lower alphas and Sharpe ratios than portfolios of low-beta
assets. They found that high beta is associated with low alpha for US equities, 20
international equity markets, treasury bonds, corporate bonds, and futures. They
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also found that a betting-against-beta (BAB) factor, which is long leveraged low-
beta assets and short high-beta assets, produces significant positive risk-adjusted
returns and rivals standard asset pricing factors (e.g., value, momentum, and
size) in terms of economic magnitude, statistical significance, and robustness
across time periods, subsamples of stocks, and global asset classes.

Frazzinia and Pedersen’s claim [15] that constrained investors stretch for
return by increasing their betas is supported by their finding that both mutual
funds and individual investors hold securities with betas that are significantly
above one. In contrast, leveraged buyout funds and Berkshire Hathaway, all of
which have access to leverage, tend to buy stocks with betas below one. These
investors could be taking advantage of the BAB effect by applying leverage to
safe assets and being compensated by investors facing borrowing constraints who
take the other side. According to Frazzinia and Pedersen [15], Warren Buffett
gets rich by betting against beta, that is, buying stocks with betas significantly
below one and applying leverage.

2.4 Low-volatility stocks, or low-volatility portfolios?

Given the outperformance of low-volatility stocks, the question arises of whether
it is possible to beat the performance of low-risk quintile portfolios by taking
advantage of the benefits of diversification [3]. For example, a portfolio of two un-
correlated but slightly more individually volatile stocks can be even less volatile
than a portfolio of two correlated stocks with lower volatility. Does optimizing
volatility in this way amplify the low-volatility effect?

Investigating this possibility, Baker, Bradley and Wurgler [3] constructed a
minimum-variance portfolio that took advantage of finer detail in the covariance
matrix. Following the estimated security method of Clarke, de Silva, and Thorley
[2], they compared the returns of an optimized low-volatility portfolio against
the performance of the lowest volatility quintile for the period 1968 to 2008.
The total volatility was reduced from 12.7% for the bottom volatility quintile
to 11.5% for the optimized portfolio. Because this reduction in volatility comes
at no expense in terms of average returns, the Sharpe ratios are substantially
better in the optimized case (0.47 versus 0.38 for bottom quintile).

2.5 Is the effect real?

On the other side of the argument, Li, Sullivan and Garcia-Feijóo [16] have
claimed that portfolio-rebalancing requirements, and the impact of associated
transaction costs on low-volatility portfolios, eliminates the benefits of the pur-
ported anomaly.

They suggested that, over the period 1963-2010, the existence and trading
efficacy of the low-volatility stock anomaly was more limited than widely be-
lieved, and could not be exploited in practice. For example, they found that
abnormal returns are concentrated among smaller stocks, which suffer from a
lack of liquidity and thus attract high transaction costs. When low-priced stocks
are omitted from value-weighted longshort portfolios, alpha is largely eliminated.
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In summary, there is strong evidence of a low-volatility anomaly, perhaps
caused by a combination of risk-seeking utility, inappropriate benchmarking,
and a lack of access to leverage. Nevertheless, the question has been raised by
Li et al. [16] as to whether this anomaly can be easily exploited. This is the
question addressed by our study.

3 The study: optimizing portfolios by minimizing
historical volatility

In the following study we investigate whether the low-volatility can be easily
exploited to generate profit. First of all, a long-term buy and hold strategy is
adopted, thus avoiding the issues of low liquidity and high transaction costs
identified by Li et al. [16]. Secondly, in contrast to previous studies (e.g. [3]), our
analysis is guaranteed out-of-sample, insofar as the test data was not available
when the training data was collected.

In-sample analyses, in which portfolios are developed and tested on the same
dataset, are problematic because they invite overfitting. It is often easy to find
some manipulation of the data that leads to outperformance by exploiting ran-
dom variation in the dataset, one which is unlikely persist into the future (see
[17]; [19]). Accordingly, it becomes difficult to differentiate between models which
have been overfitted to the data versus those whose development has not been
influenced by random quirks. One way to control for overfitting is to take into
account the length of the model relative to the amount of data compression it
achieves (see [21]). Another, more straight-forward, method is to separate the
training set and the test set.

A separate issue which arises when delineating training and test sets of his-
torical returns is that the training set will inevitably be older then the test set,
raising the possibility of contamination by future bias. For example, if we look
at the S&P 500 stocks that are in the index today, and track them back 20 years,
we will see that these stocks considerably outperform the market. The reason is
that they are future biased and fail-proof: These companies are the ones that are
guaranteed to survive and grow to take their place in the S&P index 20 years
into the future. And yet, such information was never available to investors at
that point in history. The selection itself is leaking information from the future
into the past. In order for a study of this type to be fully reliable, its training
data must have been identified before the test data was knowable.

Our study is truly out-of-sample. We collected the training data, namely
daily stock market price fluctuations for the S&P 500 companies, before the test
data had been generated by the stock market. Then we waited for two years.
The training period was the 2.5-year period from 1st January 2008 to 30th June
2011. The test period was the 2-year period from 1st July 2011 to 30th June
2013.

Adjusted close values for each stock were obtained from the Datastream
Worldscope Fundamentals online historical financial database. We only consid-
ered companies that were in the S&P 500 at the moment the data were drawn
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down, namely 30th June 2011, and which had continuous data available through-
out the training period. For the analysis of the test period, we continued to track
the selected companies in the various portfolios, even if they later slipped out of
the S&P 500. Companies that disappeared due to mergers or acquisitions during
the test period were simply removed from the portfolios on the date their trading
data ceased to be available.

The first question we addressed using this dataset was that of whether low
volatility persists: Does the fact that a stock was low volatility in the past im-
ply that it will be low volatility in the future? We found that the correlation
between S&P 500 stock volatilities for the training and test periods was 0.65,
p < .001. Clearly, volatility is something that persists. Unlike returns, it does
not fluctuate randomly between periods. The next question to be answered was
whether volatility-optimized portfolios tend to outperform the market into the
future using a simple buy and hold strategy.

3.1 Optimization algorithms

It has previously been claimed that the low-volatility anomaly is specifically
related to high-beta stocks, and that profits can be earned by betting against
beta, that is, using leverage to buy low-beta stocks, and building up a low-beta
portfolio (e.g. [12]; [15]). However, if we optimize a portfolio to minimize beta,
then, without exception, all of the weight is placed on the single lowest beta stock
available. Intuitively, this is not desirable, because an undiversified portfolio
stands a greater risk of failing to maintain its fitted features (e.g. becoming high
beta). This leads us to suggest that, while often associated with low beta, the
low-volatility anomaly more specifically concerns diversification, and the failure
of investors to exploit it. If we optimize a portfolio to minimize volatility rather
than beta, then multiple stocks will be selected, matching the intuition that
diversification among several companies is a superior strategy.

In total, we implemented four different algorithms for minimizing volatility,
and compared these against the S&P 500, the lowest volatility quintile of the S&P
500, and, for the test period, the S&P Low-Volatility Index. This index takes the
100 least volatile stocks in the S&P 500, and weights constituents relative to the
inverse of their corresponding volatility, with the least volatile stocks receiving
the highest weights. The four algorithms, which we implemented in Java, are
described below in pseudocode.

Sequential Tuner (Tuner) This algorithm runs once for each stock in the
index. It moves along the stocks in order, and the weights of each stock are
incremented as long as the standard deviation of the portfolio continues to fall.
If including a stock fails to lower the standard deviation, the weight is set to zero
and the algorithm moves to the next stock until they all have been attempted.

For example, all of the stocks initially start off with zero investment. The
algorithm considers stocks one at a time and, using a greedy strategy, will choose
the weighting for each which minimizes the overall volatility so far. The weighting
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of the first stock does not influence volatility, so it will automatically be set
to the maximum weighting. The weighting of the second stock will then be
amplified from zero upwards, as long as the overall volatility of the portfolio
keeps dropping. Then the same process will be applied to the third stock and so
forth, until all stocks have been ‘tuned in’ sequentially. In the pseudocode below
WeightVec is the weighted vector of stocks and Index is the S&P500 index of
stocks.

Algorithm 1 Tuner

1: procedure GetPortfolio
2: WeightVec← Repeat(0,Length(Index))
3: for i in Range(0,Length(Index)) do
4: while SD(WeightVec[i]←WeightVec[i] + 1) <= SD(WeightVec) do
5: WeightVec[i]←WeightVec[i] + 1

6: returnWeightVec

Low Correlation Portfolio (Low Corr) This algorithm runs once for each
stock in the index. Each run picks a different stock to start with, and then adds
stocks into the portfolio whose correlation with that starting stock is lower than
some specified threshold (we used a value of 0.35). The amount of each stock
added is chosen randomly. The process iterates over all stocks in the S&P 500
index, adding in those that have a low correlation with one of the stocks already
in the portfolio. Once the standard deviation of the portfolio falls below some
specified value (we used 1.45%), a mutator (see SD-Prob) is run to optimize its
weightings.

Algorithm 2 Low Corr

1: procedure GetPortfolio
2: loop:
3: Portfolio.add(RandInt(0,10) of Rand(Stock))
4: for Stock in Index do
5: for Items in Portfolio do
6: if CORREL(Stock,Items) < Threshold then
7: Portfolio.add(RandInt(0,10) of Stock)

8: if SD(Basket) < Value then
9: return Optimize(Portfolio)

10: GOTO loop
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Selective Fixed Weights (Fixed) The numeric value of each stock’s weight is
fixed by its standard deviation. As per the S&P Low-Volatility Index, the higher
the standard deviation, the lower the weight (given by 1

σ ). For each stock, the
algorithm runs through the other stocks, and if adding them to the portfolio
lowers the overall standard deviation, the portfolio is updated. In contrast to
the S&P Low-Volatility Index, which includes the full lowest volatility quintile,
stocks are added selectively so as to minimize the overall historical volatility.

Algorithm 3 Fixed

1: procedure GetPortfolio
2: WeightVec← [1/SD(Stock) for Stock in Index]
3: for i in Range(0,Length(Index)) do
4: if SD(TestVec[i]←WeightVec[i]) < SD(TestVec) then
5: TestVec[i]←WeightVec[i]

6: returnTestVec

Standard Deviation Probabilistic (SD-Prob) This algorithm assigns prob-
abilities to stocks based on their standard deviations. These probabilities control
the likelihood that the algorithm will select a given stock for the portfolio. Port-
folios are randomly selected according to these probabilities and tested. If the
resulting standard deviation is below a set threshold (we used 1.45%), then a
mutator is run on the portfolio to fine-tune the weights. This mutator randomly
increments or decrements the stock weights in the portfolio and saves the changes
if the standard deviation is lowered.

Algorithm 4 SD-Prob

1: procedure GetPortfolio
2: SDVector← SD(Stocks)
3: Prob← [1/x3 for x in SDVector]
4: loop:
5: SamplePort← [RandInt(0,50) if RandReal(0,1) < x for x in Prob]
6: if SD(SamplePort) < SD(Lowest) then Lowest ← SamplePort

7: if Lowest < Threshold then return Optimize(Lowest)

8: GOTO loop

9: procedure Optimize
10: while Attempts < 50 do
11: temp ← [x + 1 if RandReal(0,1) < 0.1 else x − 1 if RandReal(0,1) >

0.9 else x for x in Lowest]
12: if SD(temp) < SD(NewVec) then NewVec← temp

13: Attempts + 1

14: return NewVec
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The following tables show how the four algorithms compared against the
market and low-volatility quintile portfolios in the training and test periods.
A range of standard metrics is given including annualized volatility, annualized
return, Sharpe ratio (excess return to standard deviation), beta coefficient (cor-
related relative volatility with the market), Treynor’s ratio (excess return to
beta), Jensen’s alpha (abnormal return over beta expectation), tracking error
(standard deviation of divergence from market) and information ratio (excess
return to standard deviation of tracking error).

Finally, we include the Randomness Deficiency Coefficient metric (RDC; see
[18]), which provides an accessible overview of the extent to which excess returns
deviate from chance. RDC is essentially a significance value for time series. An
RDC of 0 indicates that the overall level of return fails to surpass that of the risk-
free rate (not significant). A positive RDC is the average number of randomly
generated time series with the same characteristics as this one that would have
to be considered before coming across one with excess returns as good as this
one. For example, an RDC of 3 implies that, on average, we expect to discard
three similar randomly-generated time series exceeding the risk-free rate before
finding one better than this (slightly above chance performance). The higher the
RDC, the more convincing the case that the portfolio is outperforming, not by
chance, but because of some consistent edge. A negative RDC indicates that a
portfolio has performed so badly that shorting it would have yielded performance
above the risk-free rate.

Table 1. Performance of in-sample portfolios optimized to training data

Tuner Low Corr Fixed SD-Prob Market Quintile

# Stocks: 38 13 43 8 500 100

Vol (Annual): 15.5% 15.4% 16.7% 16.1% 28.4% 19.2%

Return (Ann.): 12.9% 12.8% 16.6% 20.6% -4.5% 13.8%

Sharpe ratio: 0.83 0.83 0.99 1.28 -0.16 0.72

Beta: 0.5 0.48 0.52 0.46 1 0.64

Treynor’s ratio: 0.26 0.26 0.32 0.44 -0.04 0.21

Jensen’s alpha: 0.32 0.32 0.41 0.49 0 0.35

Tracking error: 1.14 1.2 0.99 1.25 0 0.8

Inform. ratio: 0.32 0.3 0.45 0.43 NA 0.48

RDC: 2.47 2.46 3.05 4.66 -1.15 2.11

As can be seen from Table 1, each of our four algorithms successfully identified
portfolios that had lower volatility than the market, and even lower than the
bottom volatility quintile. In addition, these portfolios involved far fewer stocks,
ranging from 43 to only 8. There was also a strong correlation between returns
and volatility, with the algorithm-derived portfolios obtaining higher RDCs than
the benchmark portfolios. Figure 1 plots the time series of the market and bottom
quintile versus the top performing strategy, namely Selective Fixed Weights. Of
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course, the key question was whether these portfolios, trained on historical data,
were either overfitted, or would maintain their outperformance into the future.

Table 2. Performance of out-of-sample portfolios optimized to test data

Tuner Low Corr Fixed SD-Prob Market Quintile S&P Low

# Stocks: 38 13 43 8 500 100 100

Vol (Annual): 14.3% 14.7% 12.1% 13.6% 18.6% 13.4% 13.4%

Return (Ann.): 10.4% 9.4% 13.8% 14.9% 9.7% 13.9% 14.5%

Sharpe ratio: 0.73 0.64 1.15 1.1 0.52 1.04 1.08

Beta: 0.66 0.66 0.59 0.58 1 0.68 0.66

Treynor’s ratio: 0.16 0.14 0.23 0.26 0.1 0.2 0.22

Jensen’s alpha: 0.08 0.06 0.17 0.2 0 0.16 0.18

Tracking error: 0.61 0.64 0.56 0.71 0 0.46 0.51

Inform. ratio: 0.02 -0.01 0.16 0.16 NA 0.2 0.21

RDC: 3.02 2.57 7.62 6.64 2.07 5.89 6.56

Table 2 reveals the performance of the same set of portfolios out-of-sample.
Every low-volatility strategy remained lower volatility than the market into the
future. Furthermore, all strategies bar one yielded greater returns than the mar-
ket, and positive alphas, leading to better Sharpe ratios and RDCs. The S&P
Low-Volatility Index outperformed the bottom volatility quintile, but was itself
outperformed by two of our four algorithms. The best performer of all was the Se-
lective Fixed Weights algorithm, which is very similar to the S&P Low-Volatility
Index, insofar as stocks are inversely weighted relative to their volatility. How-
ever, the key difference is that in our algorithm the stocks are added selectively
so as to minimize historical volatility, while the Low-Volatility index includes the
full lowest volatility quintile. The 43 stocks in our algorithm-derived portfolio
achieved an annualized volatility of 12.1% and an RDC of 7.62, compared with
13.4% and 6.56 for the Low-Volatility Index.

Although the performance advantage of our top-performing Selective Fixed
Weights algorithm over the S&P Low-Volatility Index was only marginal, this
superior performance was achieved with far fewer stocks (43 versus 100), and
without any updates to composition over the 2-year period, leading to significant
savings as regards transaction costs. Even our SD-Prob portfolio, including only
8 stocks, managed to achieve lower volatility than the market out-of-sample, as
well as superior Sharpe ratio and RDC. The fact that the S&P Low-Volatility
Index is rebalanced each quarter no doubt gives it an advantage over our buy-
and-hold strategy. Further investigations are required to determine if we can
push performance even higher through regular rebalancing.

Figure 2 plots the time series of the market and the S&P Low-Volatility
Index versus the top performing strategy, again Selective Fixed Weights. As can
be seen, the Low-Volatility Index boasts slightly higher growth (14.5% versus
13.8%) but it does so as the expense of higher volatility, leading to a lower Sharpe
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ratio and RDC. In support of Baker et al.’s [3] proposal, this result suggests that
the low-volatility effect can indeed be enhanced by diversifying the selection of
stocks within a low-volatility portfolio, although further evidence is needed to
bolster this conclusion.

Table 3. Stocks in lowest volatility quintile

Tuner Low Corr Fixed SD-Prob

% Stocks in lowest quintile 78.9% 92.3% 90.6% 100%

While Baker et al. [3] restricted their optimization to allow only the bottom
quintile of low-volatility stocks, our algorithms were able to select any stock, no
matter how volatile. Table 3 shows the percentage of stocks selected by each of
the algorithms that were drawn from the bottom volatility quintile. The fact
that these portfolios involved some high volatility stocks raises the question of
whether overfitting could be reduced, and portfolio performance enhanced, by
restricting the domain to the bottom volatility quintile. Accordingly, we recom-
puted portfolios for the four algorithms based only on these 100 lowest volatility
stocks. The results are shown in Tables 4 and 5.

Table 4. Performance of in-sample portfolios optimized to training data using low-
volatility quintile

Tuner Low Corr Fixed SD-Prob Market Quintile

# Stocks: 27 9 35 10 500 100

Vol (Annual): 15.4% 16.2% 16.7% 15.7% 28.4% 19.2%

Return (Ann.): 16.4% 11.2% 14.1% 13.1% -4.5% 13.8%

Sharpe ratio: 1.06 0.69 0.84 0.83 -0.16 0.72

Beta: 0.48 0.49 0.55 0.5 1 0.64

Treynor’s ratio: 0.34 0.23 0.26 0.26 -0.04 0.21

Jensen’s alpha: 0.4 0.28 0.35 0.32 0 0.35

Tracking error: 1.18 1.23 1.01 1.2 0 0.8

Inform. ratio: 0.37 0.26 0.39 0.31 NA 0.48

RDC: 3.39 2.07 2.5 2.48 -1.16 2.11

As can be seen in Table 4, our algorithms, as expected, performed less well
in-sample when restricted in their choices, with most of them achieving higher
volatilities and lower RDCs. However, this reduction in performance is not nec-
essarily a bad thing: The reduction in choice may be curtailing the ability of
the algorithm to exploit random noise for smoothing purposes, with positive
implications for future performance. The problem with in-sample analyses is
that stocks are selected because they have, mostly by luck, enjoyed good perfor-
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Table 5. Performance of out-of-sample portfolios optimized to test data using low-
volatility quintile

Tuner Low Corr Fixed SD-Prob Market Quintile S&P Low

# Stocks: 27 9 35 10 500 100 100

Vol (Annual): 13.1% 16.2% 12.7% 15.4% 18.6% 13.4% 13.4%

Return (Ann.): 14.3% 9.2% 14.6% 10.6% 9.7% 13.9% 14.5%

Sharpe ratio: 1.1 0.57 1.15 0.68 0.52 1.04 1.08

Beta: 0.60 0.72 0.62 0.70 1 0.68 0.66

Treynor’s ratio: 0.24 0.13 0.24 0.15 0.1 0.2 0.22

Jensen’s alpha: 0.18 0.05 0.19 0.08 0 0.16 0.18

Tracking error: 0.63 0.66 0.55 0.64 0 0.46 0.51

Inform. ratio: 0.17 -0.02 0.2 0.03 NA 0.2 0.21

RDC: 6.68 2.25 7.68 2.78 2.07 5.89 6.56

mance in the past. Investors, by contrast, cannot know in advance which stocks
will perform well into the future. Furthermore, portfolios analysed in-sample are
future-proofed, because their components are guaranteed to remain successful
enough to stay in the S&P 500 for the entire sampling period. The historical per-
formance of today’s S&P 500 companies far exceeds that of the market, because
these are the ‘winners’.

It is misleading to analyse only winners: today’s winners are just as likely to
be tomorrow’s losers. For example, of the 500 companies that made up the S&P
500 at the beginning of the test period, 7% had dropped out of the index by
the end of the test period two years later. Future bias is subtle, and can creep
into analyses from unexpected sources. For example, even focusing on the U.S
stock market might be a source of future bias, because its outstanding historical
performance leads analysts to base their theories on what may actually be a
statistical outlier. The only definitive way to avoid future bias is to develop
investment strategies in the present, and track them into the future, as we have
done. Our out-of-sample analyses are indicative of what returns an investor might
expect to achieve if investing today.

Table 5 describes the performance of the same portfolios out-of-sample. Again,
every low-volatility strategy outperformed the market. The Selective Fixed Weights
algorithm continued to outperform the S&P Low-Volatility Index fund (Random-
ness Deficiency Coefficient of 7.68 versus 6.56). However, although the Tuner
algorithm fared slightly better when restricted, the other algorithms had higher
volatilities than before. This suggests that, in most cases, allowing higher volatil-
ity stocks to be added into a portfolio can actually be beneficial. The results do
not offer support for artificially restricting the selection of stocks to the bot-
tom volatility quintile. It is worth noting that the portfolios involving greater
number of stocks (e.g. > 30) outperformed those with fewer stocks (e.g. < 10),
suggesting that a minimum-weighting constraint might reduce overfitting for
those algorithms that tend to identify portfolios with fewer components (see
[20]).
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In sum, the results as a whole offer strong support for the idea that low-
volatility portfolios can outperform the market even when following a simple
buy and hold strategy. Every low-volatility portfolio in our study achieved higher
Sharpe ratios and RDCs than the market. We performed a correlation between
annualized volatility and RDC for the 25 unique portfolios involved in the study,
involving both training and test periods. The correlation between them was
−0.79, indicating a very strong negative relationship between volatility and risk-
adjusted portfolio performance: The lowest volatility portfolios performed best,
and the highest volatility portfolios performed worst.

4 Conclusion

Li et al. [16] questioned whether the low-volatility anomaly could be exploited
in practice, claiming that rebalancing requirements and transaction costs would
wipe out any potential benefits. We have provided evidence that this is not the
case: It is possible to develop a low-volatility buy and hold strategy based on
historical daily returns that continues to outperform the market out-of-sample,
with no need for frequent rebalancing.

We have also provided some evidence that optimized portfolios can outper-
form the S&P Low-Volatility Index by exploiting the different relationships that
exist between stocks and reducing the overall volatility of the portfolio. Rather
than relying on a covariance matrix (see [3]), we employed a variety of techniques
to minimize the historical volatility of the portfolio itself. This performance was
maintained into the future, indicating that it was not all due to overfitting.
Further study is required to investigate if these results hold up over different
time periods, to find the optimal training and rebalancing periods, and to find
strategies which minimize the potential for overfitting.

In practice, these results imply that the capitalization-weighted S&P 500 is
not the most diversified index achievable. If all investors invested optimally with
full access to leverage so as to maximize their expected risk-to-reward ratio,
then, as implied by CAPM, return would indeed be a linear function of beta:
every possible source of diversification would be fully exploited, and long-term
passive investing would be the ideal form of long-term investment. However, our
results imply that it is possible to develop portofolios that are more diversified
than the market, and hence outperform the market.

The efficient market hypothesis (EMH) asserts that financial markets are
informationally efficient (e.g. [22]). Informational efficiency entails that current
prices reflect all publicly available information, and that prices instantly change
to reflect new public information. Accordingly, all stocks, and indeed all portfo-
lios of stocks, should follow a random walk, where knowledge of past events has
no value for predicting future prices changes [20].

However, the notion of short-term individual stock efficiency described by the
EMH is a separate concept to that of long-term market diversification efficiency.
Even if a market is prediction-efficient it may not be diversification-efficient: So-
phisticated diversifiers may be drawing down a larger proportion of the long-term
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risk premium the market provides, leaving other naive diversifiers to shoulder
risk without the expected rewards [20]. The central tenet of CAPM, namely that
return is linearly related to beta, assumes that the market represents the most
diversified index. But if that’s not true then investors who simply buy the mar-
ket index may be transferring their risk premiums to sophisticated diversifiers
who hold lower volatility portfolios [20].

Why should diversification inefficiency persist in the market? As pointed out
by Baker et al. ([3]) and Blitz and van Vliet ([5]), adherence to benchmarks, lack
of leverage and upmarket outperformance are all likely to play a role. While there
is much focus by investment companies in exploiting short-term pricing ineffi-
ciencies, there is less awareness of long-term algorithmic diversification strategies
(e.g. [20]; [23]). While pricing inefficiency can be exploited to generate significant
short-term profits, diversification inefficiency only delivers over the longer term,
and requires much greater patience and tenacity to exploit.

If sophisticated diversifiers are winning, then somebody else must be losing.
The growing exploitation of diversification inefficiency may explain why stock
market returns have fallen short of expectations in the 21st century [20]. Sophis-
ticated diversifiers who exploit the low-volatility anomaly may be gaining more
reward per unit of risk than naive diversifiers, who are taking on risk by buying
the stock market index, yet failing to achieve the expected historical rewards
[20].

In conclusion, these results provide further evidence in support of the low-
volatility anomaly. They reinforce the consensus that the phenomenon is due to
a failure by investors to exploit diversification and reduce risk. Although it has
been argued that such failure is linked to the inability to avail of leverage (e.g.
[6]; [5]; [12]), it is worth noting that the current study managed to match or
outperform the returns of the market in every case, without any use of leverage.
Thus, it may be that a combination of factors gives rise to the anomaly, including
the emphasis on market-linked benchmarks and the motivation of asset managers
to overpay for stocks that outperform in up markets.

5 Notes

The material on diversification inefficiency presented in the concluding section
draws from research presented at the IEEE CIFEr 2014 conference in London
[20].
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